Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We define a canonical ensemble for a gravitational causal diamond by introducing an artificial York boundary inside the diamond with a fixed induced metric and temperature, and evaluate the partition function using a saddle point approximation. For Einstein gravity with zero cosmological constant there is no exact saddle with a horizon, however the portion of the Euclidean diamond enclosed by the boundary arises as an approximate saddle in the high-temperature regime, in which the saddle horizon approaches the boundary. This high-temperature partition function provides a statistical interpretation of the recent calculation of Banks, Draper and Farkas, in which the entropy of causal diamonds is recovered from a boundary term in the on-shell Euclidean action. In contrast, with a positive cosmological constant, as well as in Jackiw-Teitelboim gravity with or without a cosmological constant, an exact saddle exists with a finite boundary temperature, but in these cases the causal diamond is determined by the saddle rather than being selected a priori.more » « less
-
A bstract Due to a well-known, but curious, minus sign in the Gibbons-Hawking first law for the static patch of de Sitter space, the entropy of the cosmological horizon is reduced by the addition of Killing energy. This minus sign raises the puzzling question how the thermodynamics of the static patch should be understood. We argue the confusion arises because of a mistaken interpretation of the matter Killing energy as the total internal energy, and resolve the puzzle by introducing a system boundary at which a proper thermodynamic ensemble can be specified. When this boundary shrinks to zero size the total internal energy of the ensemble (the Brown-York energy) vanishes, as does its variation. Part of this vanishing variation is thermalized, captured by the horizon entropy variation, and part is the matter contribution, which may or may not be thermalized. If the matter is in global equilibrium at the de Sitter temperature, the first law becomes the statement that the generalized entropy is stationary.more » « less
-
We derive the Einstein equation from the condition that every small causal diamond is a variation of a flat empty diamond with the same free conformal energy, as would be expected for a near-equilibrium state. The attractiveness of gravity hinges on the negativity of the absolute temperature of these diamonds, a property we infer from the generalized entropy.more » « less
-
The static patch of de Sitter spacetime and the Rindler wedge of Minkowski spacetime are causal diamonds admitting a true Killing field, and they behave as thermodynamic equilibrium states under gravitational perturbations. We explore the extension of this gravitational thermodynamics to all causal diamonds in maximally symmetric spacetimes. Although such diamonds generally admit only a conformal Killing vector, that seems in all respects to be sufficient. We establish a Smarr formula for such diamonds and a ``first law" for variations to nearby solutions. The latter relates the variations of the bounding area, spatial volume of the maximal slice, cosmological constant, and matter Hamiltonian. The total Hamiltonian is the generator of evolution along the conformal Killing vector that preserves the diamond. To interpret the first law as a thermodynamic relation,it appears necessary to attribute a negative temperature to the diamond, as has been previously suggested for the special case of the static patch of de Sitter spacetime. With quantum corrections included, for small diamonds we recover the ``entanglement equilibrium'' result that the generalized entropy is stationary at the maximally symmetric vacuum at fixed volume, and we reformulate this as the stationarity of free conformal energy with the volume not fixed.more » « less
An official website of the United States government
